
11.3.5 CommissionEmployee–
BasePlusCommissionEmployee Inheritance

Hierarchy Using private Data (cont.)

BasePlusCommissionEmployee Member Function print

• BasePlusCommissionEmployee’s print
function (Fig. 11.15, lines 40–48) redefines class
CommissionEmployee’s print function
(Fig. 11.14, lines 91–98) to output the appropriate
base-salaried commission employee information.

• By using inheritance and by calling member
functions that hide the data and ensure
consistency, we’ve efficiently and effectively
constructed a well-engineered class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.4 Constructors and Destructors in

Derived Classes

• Instantiating a derived-class object begins a chain of constructor
calls in which the derived-class constructor, before performing its
own tasks, invokes its direct base class’s constructor either
explicitly (via a base-class member initializer) or implicitly
(calling the base class’s default constructor).

• If the base class is derived from another class, the base-class
constructor is required to invoke the constructor of the next class
up in the hierarchy, and so on.

• The last constructor called in this chain is the constructor of the
class at the base of the hierarchy, whose body actually finishes
executing first.

• The most derived-class constructor’s body finishes executing
last.

• Each base-class constructor initializes the base-class data
members that the derived-class object inherits.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.4 Constructors and Destructors in

Derived Classes (cont.)

• When a derived-class object is destroyed, the program calls
that object’s destructor.

• This begins a chain (or cascade) of destructor calls in which
the derived-class destructor and the destructors of the direct
and indirect base classes and the classes’ members execute
in reverse of the order in which the constructors executed.

• When a derived-class object’s destructor is called, the
destructor performs its task, then invokes the destructor of
the next base class up the hierarchy.

• This process repeats until the destructor of the final base
class at the top of the hierarchy is called.

• Then the object is removed from memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.4 Constructors and Destructors in

Derived Classes (cont.)

• Base-class constructors, destructors and overloaded
assignment operators (Chapter 10) are not inherited by
derived classes.

• Derived-class constructors, destructors and overloaded
assignment operators, however, can call base-class versions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.4 Constructors and Destructors in

Derived Classes (cont.)

C++11: Inheriting Base Class Constructors

• Sometimes a derived class’s constructors simply mimic the
base class’s constructors.

• A frequently requested convenience feature for C++11 was
the ability to inherit a base class’s constructors.

• You can now do this by explicitly including a using
declaration of the form
using BaseClass::BaseClass;

• anywhere in the derived-class definition.

• In the preceding declaration, BaseClass is the base
class’s name.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.4 Constructors and Destructors in

Derived Classes (cont.)

• When you inherit constructors:
– By default, each inherited constructor has the same access level

(public, protected or private) as its corresponding base-
class constructor.

– The default, copy and move constructors are not inherited.

– If a constructor is deleted in the base class by placing = delete
in its prototype, the corresponding constructor in the derived class
is also deleted.

– If the derived class does not explicitly define constructors, the
compiler generates a default constructor in the derived class—even
if it inherits other constructors from its base class.

– If a constructor that you explicitly define in a derived class has the
same parameter list as a base-class constructor, then the base-class
constructor is not inherited.

– A base-class constructor’s default arguments are not inherited.
Instead, the compiler generates overloaded constructors in the
derived class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.5 public, protected and private

Inheritance

• When deriving a class from a base class, the base class may
be inherited through public, protected or private
inheritance.

• Use of protected and private inheritance is rare.

• Figure 11.16 summarizes for each type of inheritance the
accessibility of base-class members in a derived class.

• The first column contains the base-class access specifiers.

• A base class’s private members are never accessible
directly from a derived class, but can be accessed through calls
to the public and protected members of the base class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.6 Software Engineering with Inheritance

• When we use inheritance to create a new class
from an existing one, the new class inherits the
data members and member functions of the
existing class, as described in Fig. 11.16.

• We can customize the new class to meet our
needs by including additional members and by
redefining base-class members.

• The derived-class programmer does this in
C++ without accessing the base class’s source
code.

• The derived class must be able to link to the
base class’s object code.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.6 Software Engineering with Inheritance

(cont.)

• When we use inheritance to create a new class
from an existing one, the new class inherits the
data members and member functions of the
existing class.

• We can customize the new class to meet our
needs by redefining base-class members and
by including additional members.

• The derived-class programmer does this in
C++ without accessing the base class’s source
code (the derived class must be able to link to
the base class’s object code). ©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

11.7 Software Engineering with Inheritance

(cont.)

• Software developers can develop proprietary
classes for sale or license.

• Users then can derive new classes from these
library classes rapidly and without accessing
the proprietary source code.

• The software developers need to supply the
headers along with the object code

• The availability of substantial and useful class
libraries delivers the maximum benefits of
software reuse through inheritance.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

